Assessing the Congruence of Thermal Niche Estimations Derived from Distribution and Physiological Data. A Test Using Diving Beetles

نویسندگان

  • David Sánchez-Fernández
  • Pedro Aragón
  • David T. Bilton
  • Jorge M. Lobo
چکیده

A basic aim of ecology is to understand the determinants of organismal distribution, the niche concept and species distribution models providing key frameworks to approach the problem. As temperature is one of the most important factors affecting species distribution, the estimation of thermal limits is crucially important for inferring range constraints. It is expectable that thermal physiology data derived from laboratory experiments and species' occurrences may express different aspects of the species' niche. However, there is no study systematically testing this prediction in a given taxonomic group while controlling by potential phylogenetic inertia. We estimate the thermal niches of twelve Palaearctic diving beetles species using physiological data derived from experimental analyses in order to examine the extent to which these coincided with those estimated from distribution models based on observed occurrences. We found that thermal niche estimates derived from both approaches lack general congruence, and these results were similar before and after controlling by phylogeny. The congruence between potential distributions obtained from the two different procedures was also explored, and we found again that the percentage of agreement were not very high (~60%). We confirm that both thermal niche estimates derived from geographical and physiological data are likely to misrepresent the true range of climatic variation that these diving beetles are able to tolerate, and so these procedures could be considered as incomplete but complementary estimations of an inaccessible reality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological niche and geographical range in European diving beetles (Coleoptera: Dytiscidae).

Geographical ranges vary greatly in size and position, even within recent clades, but the factors driving this remain poorly understood. In aquatic beetles, thermal niche has been shown to be related to both the relative range size and position of congeners but whether other physiological parameters play a role is unknown. Metabolic plasticity may be critical for species occupying more variable...

متن کامل

Thermal Niches of Two Invasive Genotypes of the Wheat Curl Mite Aceria tosichella: Congruence between Physiological and Geographical Distribution Data.

The wheat curl mite (WCM), Aceria tosichella Keifer, is a major pest of cereals worldwide. It is also a complex of well-defined genetic lineages with divergent physiological traits, which has not been accounted for in applied contexts. The aims of the study were to model the thermal niches of the two most pestiferous WCM lineages, designated MT-1 and MT-8, and to assess the extent to which temp...

متن کامل

Investigation and zoning of thermal physiological stresses in Iran

Analysis and zoning of thermal physiological stresses in Iran   Abstract Human health is influenced by weather variables in all circumstances, including atmospheric pressure, humidity and temperature around them. Based on climate hazard and climate changes, different parts of human life and economic and social strategies such as health, hydrological pollutants And agriculture had a profound ...

متن کامل

Thermal niche estimators and the capability of poor dispersal species to cope with climate change.

For management strategies in the context of global warming, accurate predictions of species response are mandatory. However, to date most predictions are based on niche (bioclimatic) models that usually overlook biotic interactions, behavioral adjustments or adaptive evolution, and assume that species can disperse freely without constraints. The deep subterranean environment minimises these unc...

متن کامل

E-Bayesian Estimations of Reliability and Hazard Rate based on Generalized Inverted Exponential Distribution and Type II Censoring

Introduction      This paper is concerned with using the Maximum Likelihood, Bayes and a new method, E-Bayesian, estimations for computing estimates for the unknown parameter, reliability and hazard rate functions of the Generalized Inverted Exponential distribution. The estimates are derived based on a conjugate prior for the unknown parameter. E-Bayesian estimations are obtained based on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012